Comparison of Deterministic and Probabilistic Variational Data Assimilation Methods Using Snow and Streamflow Data Coupled in HBV Model for Upper Euphrates Basin
نویسندگان
چکیده
The operation of upstream reservoirs in mountainous regions fed by snowmelt is highly challenging. This partly due to scarce information given harsh topographic conditions and a lack monitoring stations. In this sense, snow observations from remote sensing provide additional relevant about the current basin. can be used improve model states forecast using data assimilation techniques, therefore enhancing reservoirs. Typical techniques effectively reduce uncertainty initialization merging simulations observations. However, they do not take into account model, structural, or parametric uncertainty. intrinsic introduces complexity restricts daily work operators. novel Multi-Parametric Variational Data Assimilation (MP-VarDA) uses different parameter sets create pool models that quantify arising parametrization. study focuses on sensitivity reduction MP-VarDA coupled HBV hydrological pools impact number performance streamflow Snow Cover Area (SCA) forecasts. created Monte Carlo simulation, combined with an Aggregated Distance (AD) Method, instances. tests are conducted Karasu Basin, located at uppermost part Euphrates River Türkiye, where significant portion yearly runoff. analyses were for thresholds based observation exceedance probabilities. According results comparison deterministic VarDA, probabilistic improves m-CRPS gains forecasts 57% 67% BSS skill 52% 68% when SCA assimilated. improvement rapidly increases first but reaches maximum benefit after 5 pool. notable both methods forecasts, best gain obtained VarDA (31%), while detected (12%).
منابع مشابه
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولA review of operational methods of variational and ensemble-variational data assimilation: Ensemble-variational data assimilation
Variational and ensemble methods have been developed separately by various research and development groups and each brings its own benefits to data assimilation. In the last decade or so, various ways have been developed to combine these methods, especially with the aims of improving the background-error covariance matrices and of improving efficiency. The field has become confusing, even to ma...
متن کاملinvestigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Improved variational methods in statistical data assimilation
Data assimilation transfers information from an observed system to a physically based model system with state variables x(t). The observations are typically noisy, the model has errors, and the initial state x(t0) is uncertain: the data assimilation is statistical. One can ask about expected values of functions 〈G(X)〉 on the path X={x(t0), . . .,x(tm)} of the model state through the observation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geosciences
سال: 2023
ISSN: ['2076-3263']
DOI: https://doi.org/10.3390/geosciences13030089